منابع مشابه
Evaluating Feature Selection for SVMs in High Dimensions
We perform a systematic evaluation of feature selection (FS) methods for support vector machines (SVMs) using simulated high-dimensional data (up to 5000 dimensions). Several findings previously reported at low dimensions do not apply in high dimensions. For example, none of the FS methods investigated improved SVM accuracy, indicating that the SVM built-in regularization is sufficient. These r...
متن کاملFeature Selection in High-Dimensional Classification
High-dimensional discriminant analysis is of fundamental importance in multivariate statistics. Existing theoretical results sharply characterize different procedures, providing sharp convergence results for the classification risk, as well as the l2 convergence results to the discriminative rule. However, sharp theoretical results for the problem of variable selection have not been established...
متن کاملConsistent Model Selection Criteria on High Dimensions
Asymptotic properties of model selection criteria for high-dimensional regression models are studied where the dimension of covariates is much larger than the sample size. Several sufficient conditions for model selection consistency are provided. Non-Gaussian error distributions are considered and it is shown that the maximal number of covariates for model selection consistency depends on the ...
متن کاملFeature Selection and Data Sampling Methods for Learning Reputation Dimensions
We report on our participation in the reputation dimension task of the CLEF RepLab 2014 evaluation initiative, i.e., to classify social media updates into eight predefined categories. We address the task by using corpus-based methods to extract textual features from the labeled training data to train two classifiers in a supervised way. We explore three sampling strategies for selecting trainin...
متن کاملFeature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2020
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2020.1796677